Abstract

The homeostasis dysfunctions caused by cold stress remain a threat to intestinal health, particularly for young broiler chickens. We hypothesized that adenosine monophosphate-activated protein kinase (AMPK) was involved in the regulation of cold stress on intestinal health. This study aimed to examine the effect of cold stress for 72 h on growth performance, serum biochemistry, intestinal barrier molecules, and AMPK in broilers. A total of 144 10-day-old male Arbor Acres broilers were subjected to temperature treatments (control 28 ± 1 °C vs cold stress 16 ± 1 °C) for 72 h. Growth performance was monitored, serum was collected for the analysis of physiological parameters, and jejunal mucosa was sampled for the determination of tight junction (TJ) proteins, heat shock proteins, and AMPK signaling molecules. Results showed that 72 h cold treatment reduced average BW gain and increased the feed conversion ratio of the broilers (P < 0.05). Cold stress for 72 h increased blood endotoxin, aspartate aminotransferase, glucose, and low-density lipoprotein cholesterol levels (P < 0.05). Moreover, 72 h cold treatment up-regulated jejunal Occludin, zonula occludin 1, inducible nitric oxide synthase, heat shock factor 1, and AMPKα1 gene expression (P < 0.05) but had no obvious effect on total AMPK protein expression (P > 0.05). In conclusion, cold stress significantly reduced the growth performance of broiler chickens. The intestinal barrier function might be impaired, and enhanced bacterial translocation might occur. The unregulated gene expression of TJ proteins implied the remodeling of intestinal barrier. The change of AMPK suggested the possible relationship between intestinal energy metabolism and barrier function under cold stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.