Abstract

The involvement of microtubules in the transepithelial transport of exogenous lipid in intestinal absorptive cells has been suggested. Using electronmicroscopic, biochemical, and radiochemical methods, we have studied the effects of the antimicrotubular agent colchicine on the intestinal mucosa and on the intestinal transport of endogenous lipid of rats in the fasting state. After colchicine treatment, the concentration of triglycerides in intestinal mucosa of rats fasted for 24 h doubled, and electron microscopic studies showed a striking accumulation of lipid particles in absorptive epithelial cells of the tips of jejunal villi. These findings suggest that colchicine interferes with the intestinal transepithelial transport of endogenous lipoproteins. Additional studies, using an intraduodenal pulse injection of [14C]linoleic acid, showed that colchicine does not affect the uptake of fatty acids by intestinal mucosa. However, it had divergent effects on fatty acid esterification, enhancing their incorporation into triglycerides relative to phospholipids, and caused a significant accumulation of endogenous diglycerides, triglycerides, and cholesterol esters within the absorptive intestinal epithelium. Detailed ultrastructural and morphometric studies revealed a decrease of visible microtubules, and a displacement of the smooth and rough endoplasmic reticulum and Golgi apparatus. Furthermore, it is shown that after colchicine treatment, microvilli appear at the lateral plasma membrane of intestinal absorptive cells, a change not previously reported to our knowledge. Thus, our study shows that (a) colchicine causes significant changes in enterocyte ultrastructure and (b) colchicine perturbs the reesterification of absorbed endogenous fatty acids and their secretion in the form of triglyceride-rich lipoproteins from the enterocyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.