Abstract

In the present study, we investigated in vitro the possible genotoxic and/or co-genotoxic activity of 50 Hz (power frequency) magnetic fields (MF) by using the alkaline single-cell microgel-electrophoresis (comet) assay. Sets of experiments were performed to evaluate the possible interaction between 50 Hz MF and the known leukemogen benzene. Three benzene hydroxylated metabolites were also evaluated: 1,2-benzenediol (1,2-BD, catechol), 1,4-benzenediol (1,4-BD, hydroquinone), and 1,2,4-benzenetriol (1,2,4-BT). MF (1 mT) were generated by a system consisting of a pair of parallel coils in a Helmholtz configuration. To evaluate the genotoxic potential of 50 Hz MF, Jürkat cell cultures were exposed to 1 mT MF or sham-exposed for 1 h. To evaluate the co-genotoxic activity of MF, the xenobiotics (benzene, catechol, hydroquinone, and 1,2,4-benzenetriol) were added to Jürkat cells subcultures at the beginning of the exposure time. In cell cultures co-exposed to 1 mT (50 Hz) MF, benzene and catechol did not show any genotoxic activity. However, co-exposure of cell cultures to 1 mT MF and hydroquinone led to the appearance of a clear genotoxic effect. Moreover, co-exposure of cell cultures to 1 mT MF and 1,2,4-benzenetriol led to a marked increase in the genotoxicity of the ultimate metabolite of benzene. The possibility that 50 Hz (power frequency) MF might interfere with the genotoxic activity of xenobiotics has important implications, since human populations are likely to be exposed to a variety of genotoxic agents concomitantly with exposure to this type of physical agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call