Abstract

Matching the codon usage of recombinant genes to that of the expression host is a common strategy for increasing the expression of heterologous proteins in bacteria. However, while developing a cytoplasmic expression system for Fusarium solani cutinase in Escherichia coli, we found that altering codons to those preferred by E. coli led to significantly lower expression compared to the wild-type fungal gene, despite the presence of several rare E. coli codons in the fungal sequence. On the other hand, expression in the E. coli periplasm using a bacterial PhoA leader sequence resulted in high levels of expression for both the E. coli optimized and wild-type constructs. Sequence swapping experiments as well as calculations of predicted mRNA secondary structure provided support for the hypothesis that differential cytoplasmic expression of the E. coli optimized versus wild-type cutinase genes is due to differences in 5 ′ mRNA secondary structures. In particular, our results indicate that increased stability of 5 ′ mRNA secondary structures in the E. coli optimized transcript prevents efficient translation initiation in the absence of the phoA leader sequence. These results underscore the idea that potential 5 ′ mRNA secondary structures should be considered along with codon usage when designing a synthetic gene for high level expression in E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.