Abstract

The effects of the coating amount of surfactant and the particle concentration on the impact strength of polypropylene (PP)/CaCO3 nanocomposites were investigated. Nanocomposites prepared with monolayer-coated CaCO3 nanoparticles had the best mechanical properties, including Young’s modulus, tensile yield stress and impact strength because of the good dispersion of the nanoparticles in the polymer matrix. In addition, the good dispersibility of the monolayer-coated nanoparticles allowed us to study the effects of particle concentration on the impact strength of the nanocomposites. H-PP and E-PP, which were the low and high molecular weight PPs, respectively, were used as polymer matrices. Critical particle concentrations of 10 and 25wt% corresponding to an abrupt increase in the impact toughness were determined for the E-PP and H-PP nanocomposites, respectively. Good particle dispersion in a polymer matrix is the prerequisite for the calculation of the critical ligament thickness using the critical particle concentration. We propose that the observed critical ligament thickness actually corresponds to the critical thickness at which the plane-strain to plane-stress transition occurs. In addition, the critical ligament thickness of a nanocomposite depends on the properties of the polymer matrix, such as molecular weight, even for a given type of polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.