Abstract
Coal mining can significantly impact vegetation evolution, yet the limited information on its patterns and driving factors hampers efforts to mitigate these effects and reclaim abandoned mines. This study aimed to 1) examine vegetation evolution in a semiarid steppe watershed in northeast China; and 2) characterize the driving factors behind this evolution. We analyzed the impact of twelve selected driving factors on fractional vegetation coverage (FVC) from 2000 to 2021 using a dimidiate pixel model, Sen's slope analysis, Mann-Kendall trend test, coefficient of variation analysis, and Geodetector model. At a significance level of α = 0.05, our findings revealed a south-to-north decline pattern in FVC, a significant decrease trend in proximity to coal mines, and a notable increase trend adjacent to river channels. Approximately 37% of the watershed exhibited low FVC, while the overall temporal trend across the watershed was deemed insignificant. Areas surrounding the mines experienced a substantial reduction in FVC due to coal mining activities, while FVC variations across the watershed were linked to precipitation, temperature, and soil type. FVC predictions improved notably when interactions between multiple two-way factors were considered. Each driving factors displayed an optimal range (e.g., precipitation = 63–71 mm) for maximizing FVC. Given the study watershed's status as a national energy base, understanding vegetation responses to coal mining and climate-environment changes is crucial for sustaining fragile terrestrial ecosystems and socioeconomic development. Achieving a long-time balance between coal extraction and ecological protection is essential. The study outcomes hold significant promise for advancing ecological conservation, vegetation restoration, and mitigation of environmental degradation in semiarid regions affected by extensive coal mining and climate fluctuations. These findings contribute to the strategic management of such areas, promoting sustainable practices amidst evolving environmental challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.