Abstract

Bread and baked products are an essential source of protein, dietary fiber, vitamins, micronutrients, and antioxidants. Unfortunately, the use of weak, and whole wheat flours creates significant rheological problems and results in bread with inadequate characteristics (e.g. low volume and height). In this context, an important harmful effect is dough warming during kneading, which worsens both rheological properties and bread characteristics. Thus, improvement strategies need to be found. This paper assesses the effects of the addition during kneading of an alternative refrigerant, namely CO2 snow, on dough temperature, dough rheological properties, and bread characteristics. Two types of flour were tested: a modern wheat cultivar (Bologna) and an ancient wheat cultivar (Verna). Six percentages of CO2 snow were tested: 0% (control, no CO2 snow), 2%, 4%, 6%, 8%, and 10%. Our results show the effectiveness of CO2 snow addition on dough thermoregulation and the improvement of bread characteristics. High percentages of CO2 snow (6%, 8%, and 10%) lowered the final dough temperature 2°C, 3°C, and 4°C respectively. Furthermore, specific volume and loaf height increased, and crumb density slightly decreased, both for Verna and Bologna flours. Other advantages of this alternative refrigerant include its ease of application, higher cooling power compared to other refrigerants, no increase in dough total water content, and no chemical or toxic residuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call