Abstract

Chemical looping combustion (CLC) of coal has received increasing interest in recent years. However, few attempts have been made to examine the effects of CO2 atmosphere and K2CO3 addition on the reduction rate, the oxygen transport capacity (OTC), and the sintering of the oxygen carrier when coal is used directly in CLC. In this work, these issues for Fe2O3 and the CuO oxygen carriers were investigated by thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma–atomic emission spectrometry (ICP-AES). The TGA results indicate that the reduction rates can be increased by either the CO2 atmosphere or the K2CO3 additive due to the enhanced CO2 gasification of coal char. Detailed analyses demonstrate that the CO2 atmosphere affects the OTC and the sintering of the oxygen carrier by thermodynamic restrictions. The CO2 atmosphere has no effect on the OTC of the CuO oxygen carrier, and there are no significant differences in si...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.