Abstract
Amorphous and crystalline Zn[Formula: see text]CoxS ([Formula: see text], 0.3, 0.5) thin films were grown on sapphire (Al2O3) substrates by pulsed laser deposition at substrate temperature of 25∘C and 800∘C, respectively. The X-ray diffraction results show that the crystalline film has a cubic zinc blende structure and the crystalline quality decreased with increasing Co-doping concentration. The X-ray diffraction and X-ray photoelectron spectroscopy spectra reveal that the samples reached an overdoping state at Co-doping concentration of [Formula: see text]. The absorbance of films increases and the absorption edge shifts to longer wave length direction with increasing Co-doping concentration. The redshift of the band gap energy depends on the Co composition associating with the Urbach energy. Furthermore, the refractive index and dielectric constant increase with increasing Co-doping concentration. The dispersion parameters, such as dispersion energy ([Formula: see text]), oscillator energy ([Formula: see text]), static refractive index ([Formula: see text]), static dielectric constant ([Formula: see text]), interband transition strength moments ([Formula: see text] and [Formula: see text]), oscillator strength [Formula: see text] and oscillator wavelength [Formula: see text], have been analyzed by Wemple–DiDomenico single oscillator model. All these parameters were found to be dependent upon the Co-doping concentration in the Zn[Formula: see text]CoxS thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.