Abstract
MgH 2 with 10 wt.% Ti 0.4Mn 0.22Cr 0.1V 0.28 alloy (termed the BCC alloy for its body centred cubic structure) and 5 wt.% carbon nanotubes (CNTs) were prepared by planetary ball milling, and its hydrogen storage properties were compared with those of the pure MgH 2 and the binary mixture of MgH 2 and the BCC alloy. The sample with CNTs showed considerable improvement in hydrogen sorption properties. Its temperature of desorption was 125 °C lower than for the pure sample and 59 °C lower than for the binary mixture. In addition, the gravimetric capacity of the ternary sample was 6 wt.% at 300 °C and 5.6 wt.% at 250 °C, and it absorbed 90% of this amount at 150 s and 516 s at 300 °C and 250 °C, respectively. It can be hypothesised from the results that the BCC alloy assists the dissociation of hydrogen molecules into hydrogen atoms and also promotes hydrogen pumping into the Mg/BCC interfaces, while the CNTs facilitate access of H-atoms into the interior of Mg grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.