Abstract

AbstractIn gynodioecious species, male steriles co‐occur with hermaphrodites. Usually, the male sterile trait is maternally inherited, hence it is called Cytoplasmic Male Sterility (CMS). Nuclear loci restore male fertility in combination with their ‘own’ specific cytoplasmic types. In theory, two fitness components are important for the maintenance of this breeding system: a fitness advantage of the male steriles, and costs of restoration. The costs of restoration are alleged negative pleiotropic effects of restorer alleles.In this study the effects of different CMS types on plant performance and the cost of restoration were assessed in two experiments with Plantago lanceolata L. Biomass production differed significantly between the CMS types studied. In order to assess the costs of restoration, hermaphrodites with or without restorer alleles for a CMS type other than its own were compared. The studied restorer alleles caused a reduction in weight per seed, but the number of seeds produced was unaffected. The estimated cost of restoration measured as reduction of seed biomass was 13% for restorer alleles for CMSI. However, in the second experiment no pleiotropic effects of restorer alleles were detected, either because the assumptions for the experimental set‐up were not valid or the costs of restoration may not always be expressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call