Abstract

Soil moisture dynamics play an active role in ecological and hydrological processes. Although the variation of the soil water moisture of multiple ecosystems have been well-documented, few studies have focused on soil hydrological properties by using a drying and weighing method in a long time series basis in the Qinghai-Tibet Plateau (QTP). In this study, 13 year (2008–2020) time-series observational soil moisture data and environmental factors were analyzed in a humid alpine Kobresia meadow on the Northern Qinghai–Tibetan Plateau. The results showed no significant upward trend in soil water content during the 2008–2020 period. In the growth season (May–October), the soil water content showed a trend of decreasing firstly, then increasing, and finally, decreasing. Correlation analysis revealed that five meteorology factors (temperature, humidity, net radiation, dew point temperature, and vapor pressure) and a biomass element (above-ground biomass) had a significant effect on the soil moisture, and air temperature impacted the soil water variation negatively in 0–50 cm, indicating that global warming would reduce soil moisture. Humidity and net radiation made a difference on shallow soil (0–10 cm), while dew point temperature and vapor pressure played a role on the deep soil (30–50 cm). Above-ground biomass only effected 30–50 cm soil moisture variation, and underground biomass had little effect on the soil moisture variation. This indirectly indicated that below-ground biomass is not limited by soil moisture. These results provide new insights for the rational allocation of water resources and management of vegetation in alpine meadows, in the context of climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call