Abstract

It is essential to understand how climate change and varieties affect crop phenology and yields to adapt to future climate change. The aim of this study was to analyse the phenological development trends of three winter wheat cultivars (1990-2020) to identify the most critical meteorological-climatic factors influencing the development and yield of the cultivars and to investigate the heat requirements for each phenological phase to reveal the potential of the different cultivars to adapt to the warming climate. The observed dates of green-up, the beginning of stem elongation, and the grain development advanced significantly, but the timing of maturity changed insignificantly during the period of 1990-2020. The most marked change was related to the shortening of the period from sowing to green-up. The green-up dates were related to the mean temperature of the period after sowing. The occurrence of stem elongation and grain development dates were negatively correlated with the mean temperature in May. Significant correlations were found between temperature and duration from sowing to green-up and positive from stem elongation to grain development. The change of cultivar led to earlier green-up and grain development dates, but cultivar choise had no influence on sowing, stem elongation, and maturity dates from 1990 to 2020. The newer cultivar Skagen was more successful in exploiting increased thermal resources. The heat requirements remained almost unchanged during the vegetative development period, while the heat amount required during the reproductive period increased by about 15%. These findings demonstrate that the choice of crop cultivars with higher thermal requirements may be an appropriate adaptation mean to achieve higher yields in response to climate change, at least in the middlelatitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.