Abstract

Threats posed by Eurasian annual grasses to ecosystem function have received little attention. Therefore, protocols for prioritising these alien annual species and likely future dimensions of their spread are urgently required. Here we modelled these grasses potential distribution and shifts in distribution ranges in South Africa under current and future climate scenarios. We applied a modelling framework (BIOMOD), which integrated a variety of parametric statistical and non-parametric rule based models to point distribution records of 29 invasive grass species. Correspondence between modelled and recorded distributions was calculated using the model accuracy criteria called the AUC (Area under the Curve). Based on this criteria 12 C3 species were excellently modelled (AUC = 0.9–1), 11 C3 species had good model accuracy (AUC = 0.7–0.8) and four C3 and four C4 species fell into the fair (AUC = 0.6–0.7) model accuracy class. Mean temperature of the coldest month was the strongest environmental parameter, for most of the alien grass distributions. Modelled distributions of the alien annual grasses projected into the future indicated range contractions in all C3 species, except Briza minor, which were accompanied by shifts in species distribution ranges into higher altitudes. All C4 species displayed habitat loss of relatively similar magnitude with climate warming and shifts in their distribution ranges also into higher elevations. These findings conclude that climate change will hinder the spread of European annual grasses in southern Africa. However, shifts in their distributions into pristine areas at higher elevations could pose a threat to the natural vegetation by altering fire regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.