Abstract

Climate change can pose a significant threat to terrestrial ecosystems by disrupting the circulation of soil nitrogen. However, experimental analyses on the effect of climate change on soil nitrogen cycles and the implications for the conservation of key wildlife species (i.e., the giant panda, Ailuropoda melanoleuca) remain understudied. We investigated the effects of a 1.5 °C, 3 °C, and 4.5 °C temperature increase on nitrogen distribution in different soil layers of bamboo forest via an in-situ experiment and assessed the implications for the growth and survival of arrow bamboo (Bashania faberi), a critical food resource for giant pandas. Our results showed that warming treatments generally increased soil N content, while effects differed between surface soil and subsurface soil and at different warming treatments. Particularly an increase of 1.5 °C raised the subsurface soil NO3-N content, as well as the content of N in bamboo leaves. We found a significant positive correlation between the subsurface soil NO3-N content and the N content of arrow bamboo. An increase of 3–4.5 °C raised the content of total N and NO3-N in the surface soil and led to a reduction in the total aboveground biomass and survival rate of arrow bamboo. Limited warming (e.g., the increase of 0–1.5 °C) may promote the soil N cycle, raise the N-acetylglucosaminidase (NAG) enzyme activity, increase NO3-N in subsurface soil, increase the N content of bamboo, and boost the biomass of bamboo – all of which could be beneficial to giant panda survival. However, higher warming (e.g., an increase of 3–4.5 °C) resulted in mass death of bamboo and a large reduction in aboveground biomass. Our findings provide a cautiously optimistic scenario for bamboo forest ecosystems under low levels of warming over a short period of time, but risks from higher levels of warming may be serious, especially considering the unpredictability of global climatic change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.