Abstract

The aim of this study was to analyze the effects of climate fluctuations on runoff in the headwater region of the Kaidu River in northwestern China. For this purpose, precipitation and potential evaporation (PET) data from 5 meteorological stations and the runoff depth data from the Dashankou hydrological station in the headwater region of the Kaidu River from 1960 to 2009 were collected, then the trends and abrupt changes of precipitation, PET and runoff depth were analyzed by means of Mann-Kendall test (M-K test) and Mann-Kendall-Sneyers test (M-K-S test), respectively. The runoff model driven by precipitation and PET was developed in this work and the sensitivity of runoff to climate fluctuation was simulated under different scenarios. Results showed that the annual precipitation and runoff depth both exhibited an increasing trend over the periods 1960–2009; however, this is not the case for the annual PET. The abrupt changes for annual precipitation, PET and runoff depth all occurred in the early 1990s. The established driving model could well reflect the complicated nonlinear relationship among runoff depth, precipitation and PET. The sensitivity analysis indicated that the precipitation had a positive effect on the runoff depth, opposite to what were observed between PET and runoff, and the runoff depth was more sensitive to precipitation than to PET in the headwater region of the Kaidu River.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.