Abstract
Zoonotic tick-borne diseases are an increasing health burden in Europe and there is speculation that this is partly due to climate change affecting vector biology and disease transmission. Data on the vector tick Ixodes ricinus suggest that an extension of its northern and altitude range has been accompanied by an increased prevalence of tick-borne encephalitis. Climate change may also be partly responsible for the change in distribution of Dermacentor reticulatus. Increased winter activity of I. ricinus is probably due to warmer winters and a retrospective study suggests that hotter summers will change the dynamics and pattern of seasonal activity, resulting in the bulk of the tick population becoming active in the latter part of the year. Climate suitability models predict that eight important tick species are likely to establish more northern permanent populations in a climate-warming scenario. However, the complex ecology and epidemiology of such tick-borne diseases as Lyme borreliosis and tick-borne encephalitis make it difficult to implicate climate change as the main cause of their increasing prevalence. Climate change models are required that take account of the dynamic biological processes involved in vector abundance and pathogen transmission in order to predict future tick-borne disease scenarios.
Highlights
Zoonotic tick-borne diseases in Europe have become increasingly prominent since the emergence of Lyme borreliosis (LB) in the early 1980s, and the incidence of this disease and that of tick-borne encephalitis (TBE) have risen dramatically over the last two decades [1]
Increased winter activity of I. ricinus is probably due to warmer winters and a retrospective study suggests that hotter summers will change the dynamics and pattern of seasonal activity, resulting in the bulk of the tick population becoming active in the latter part of the year
Both diseases are transmitted by hard ticks of the Ixodes ricinus species complex (I. ricinus and I. persulcatus) and since these ticks spend most of their time in the environment, climate change is likely to affect their distribution and abundance and, the incidence of disease
Summary
Zoonotic tick-borne diseases in Europe have become increasingly prominent since the emergence of Lyme borreliosis (LB) in the early 1980s, and the incidence of this disease and that of tick-borne encephalitis (TBE) have risen dramatically over the last two decades [1] Both diseases are transmitted by hard ticks of the Ixodes ricinus species complex (I. ricinus and I. persulcatus) and since these ticks spend most of their time in the environment, climate change is likely to affect their distribution and abundance and, the incidence of disease. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change [3] reported that in northern temperate Europe temperature increases of 1.5–2.5◦C may occur over the few decades as a result of global warming Such climate change may extend or curtail host-seeking tick activity periods, potentially increasing or decreasing tick abundance and distribution, and effects on tick development rates can change seasonal activity patterns by altering the proportion of the tick population that are exposed to regulatory mechanisms such as diapause. The potential impacts of climate-change effects on the incidences of the diseases they transmit are discussed
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary Perspectives on Infectious Diseases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.