Abstract

Industrialization in the Northern Hemisphere has led to warming and pollution of natural ecosystems. We used paleolimnological methods to explore whether recent climate change and/or pollution had affected a very remote lake ecosystem, i.e. one without nearby direct human influence. We compared sediment samples that date from before and after the onset of industrialization in the mid-nineteenth century, from four short cores taken at water depths between 12.1 and 68.3 m in Lake Bolshoe Toko, eastern Siberia. We analyzed diatom assemblage changes, including diversity estimates, in all four cores and geochemical changes (mercury, nitrogen, organic carbon) from one core taken at an intermediate water depth. Chronologies for two cores were established using 210Pb and 137Cs. Sedimentation rates were 0.018 and 0.033 cm year−1 at the shallow- and deep-water sites, respectively. We discovered an increase in light planktonic diatoms (Cyclotella) and a decrease in heavily silicified euplanktonic Aulacoseira through time at deep-water sites, related to more recent warmer air temperatures and shorter periods of lake-ice cover, which led to pronounced thermal stratification. Diatom beta diversity in shallow-water communities changed significantly because of the development of new habitats associated with macrophyte growth. Mercury concentrations increased by a factor of 1.6 since the mid-nineteenth century as a result of atmospheric fallout. Recent increases in the chrysophyte Mallomonas in all cores suggested an acidification trend. We conclude that even remote boreal lakes are susceptible to the effects of climate change and human-induced pollution.

Highlights

  • We discovered an increase in light planktonic diatoms (Cyclotella) and a decrease in heavily silicified euplanktonic Aulacoseira through time at deep-water sites, related to more recent warmer air temperatures and shorter periods of lake-ice cover, which led to pronounced thermal stratification

  • The objectives of this study were to: (1) reconstruct diatom communities from sediment cores taken at different water depths, to evaluate differences before and after the onset of industrialization and (2) discover whether there was a change in sediment geochemical composition related to post-industrial human activity such as air temperature warming, or heavy metal pollution

  • Small-scale changes in the lake started with the onset of industrialization in the mid-nineteenth century, the timing of which is supported by well-preserved anthropogenic contaminants such as mercury, which increased in the lake sediments by a factor of 1.6

Read more

Summary

Introduction

We discovered an increase in light planktonic diatoms (Cyclotella) and a decrease in heavily silicified euplanktonic Aulacoseira through time at deep-water sites, related to more recent warmer air temperatures and shorter periods of lake-ice cover, which led to pronounced thermal stratification. B. Diekmann Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany boreal lakes are susceptible to the effects of climate change and human-induced pollution. The overwhelming role of human activity basically comprises two aspects: (1) climate change from enhancement of atmospheric greenhouse gases by combustion of fossil fuels, and (2) pollution of the natural environment by industrialization and other activities associated with human population growth (IPCC 2018). Russian landscapes have experienced faster warming than sites elsewhere (Biskaborn et al 2019b) In these regions, lakes are effective sentinels of environmental change that rapidly integrate information about catchment changes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call