Abstract
Quantifying the contributions of climate change (CC) and human activities (HA) to vegetation change is crucial for making a sustainable vegetation restoration scheme. However, the effects of extreme climate and time-lag and -accumulation effects on vegetation are often ignored, thus underestimating the impact of CC on vegetation change. In this study, the spatiotemporal variation of fractional vegetation cover (FVC) from 2000 to 2019 in northern China (NC) as well as the time-lag and -accumulation effects of 15 monthly climatic indices, including extreme indices, on the FVC, were analyzed. Subsequently, a modified residual analysis considering the influence of extreme climate and time-lag and -accumulation effects was proposed and used to attribute the change in the FVC contributed by CC and HA. Given the multicollinearity of climatic variables, partial least squares regression was used to construct the multiple linear regression between climatic indices and the FVC. The results show that: (1) the annual FVC significantly increased at a rate of 0.0268/10a from 2000 to 2019 in all vegetated areas of NC. Spatially, the annual FVC increased in most vegetated areas (∼81.6 %) of NC, and the increase was significant in ∼54.6 % of the areas; (2) except for the temperature duration (DTR), climatic indices had no significant time-lag effects but significant time-accumulation effects on the FVC change. The DTR had both significant time-lag and -accumulation effects on the FVC change. Except for potential evapotranspiration and DTR, the main temporal effects of climatic indices on the FVC were a 0-month lag and 1–2-month accumulation; and (3) the contributions of CC and HA to FVC change were 0.0081/10a and 0.0187/10a in NC, respectively, accounting for 30.2 % and 69.8 %, respectively. HA dominated the increase in the FVC in most provinces of NC, except for the Qinghai and Neimenggu provinces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.