Abstract
Mountain forests are biodiversity hotspots with competing hypotheses proposed to explain elevational trends in habitat specialization and species richness. The altitudinal-niche-breadth hypothesis suggests decreasing specialization with elevation, which could lead to decreasing species richness and weaker differences in species richness and beta diversity among habitat types with increasing elevation. Testing these predictions for bacteria, fungi, plants, arthropods, and vertebrates, we found decreasing habitat specialization (represented by forest developmental stages) with elevation in mountain forests of the Northern Alps – supporting the altitudinal-niche-breadth hypothesis. Species richness decreased with elevation only for arthropods, whereas changes in beta diversity varied among taxa. Along the forest developmental gradient, species richness mainly followed a U-shaped pattern which remained stable along elevation. This highlights the importance of early and late developmental stages for biodiversity and indicates that climate change may alter community composition not only through distributional shifts along elevation but also across forest developmental stages.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.