Abstract

Numerical investigations of leakage flow fields of two kinds of brush seals with four sealing clearances were conducted in this paper. The Reynolds-Averaged Navier-Stokes (RANS) and non-Darcian porous medium model solutions were applied as the numerical approach to analyze the flow characteristics of brush seal. The reliability and accuracy of the RANS and non-Darcian porous medium model for leakage flow in brush seals were established by comparison with the experimental data. The referenced labyrinth seal was changed into a multi-stage brush seal which has two configurations. One configuration had a traditional geometrical structure. The other had a shim structure installed between the front plate and brush bristle pack. The leakage flow rates of the brush seal with two different configurations were calculated for four bristle pack tip clearances (0mm, 0.1mm, 0.3mm, 0.5mm) which were compared with the results for the referenced labyrinth seal. The numerical results show that the leakage flow rate increases rapidly with the increasing of clearance between the bristle pack tip and the rotor surface for two kinds of brush seals. The sealing performance of the brush seal with shim structure is similar to that of the traditional design with the same sealing clearance and flow conditions. In addition, as compared with the traditional brush seal, the brush seal with shim structure can reduce the pressure difference between the bristle free and fence height at 0.3mm and 0.5mm sealing clearance. The leakage flow patterns in brush seals with two different configurations were also illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.