Abstract

Half-annulus unsteady numerical simulations have been conducted with a 60-deg total pressure circumferential distortion in a transonic axial-flow fan. The effects of inlet distortion on the performance, stability and flow field of the test case are investigated and analyzed. Results show that the incidence angles are reduced when the blades are entering into the distorted region. Conversely, distortion increases the incidence angles onto the blades when they are leaving the distorted section. Results further reveal that the time-averaged flow field at the tip of the blade is similar with and without distortion. However, the distortion applied is found to have detrimental effects on both the stability and performance. The impacts of both annular and discrete tip injection on the endwall flow field are further studied in the current work. It is shown that endwall injection reduces the incidence angles onto the blades. Consequently, the passage shock and the leakage flow are pushed rearward, which postpones stall initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call