Abstract
PDE4 (phosphodiesterase-4) plays a critical role in pathogenesis of allergic asthma and chronic obstructive pulmonary disease (COPD). PDE4 inhibitors are presently under clinical development for the treatment of asthma and/or COPD. Ciclamilast, a new PDE4 inhibitor, is a piclamilast (RP 73401) structural analogue, but has a more potent inhibitory effect on PDE4 and inflammation in the airway tissues and less side effects than that of piclamilast. In this study, we elucidate primarily on the roles of compound on PDE4 enzyme in physiological and pathological processes in a mouse model of asthma. The sensitized/challenged mice were reexposed to ovalbumin and airway response to inhaled methacholine was monitored. Orally administration of ciclamilast, in a dose-dependent manner, significantly inhibited changes in lung resistance and lung dynamic compliance, as well as upregulation of cAMP-PDE activity, increase of PDE4D mRNA expression, but not PDE4B from lung tissue in the murine model. In addition, the compound dose-dependently reduced mRNA expression of eotaxin, tumor necrosis factor (TNF)-α and interleukin (IL)-4, but slightly increased mRNA expression of interferon (IFN)-γ from lung tissue. Further, levels of eotaxin, TNF-α and IL-4, and eosinophil and neutrophil accumulation in bronchoalveolar lavage fluid were also significantly reduced. Pathological examination, goblet cell hyperplasia and inflammatory cells infiltration in lung tissue were suppressed by treatment with ciclamilast. A significant correlation was observed between the increases in PDE4D mRNA expression and airway hyperresponsiveness. These studies confirm that inhibitory effect of ciclamilast on airway hyperresponsiveness includes its inhibiting PDE4D mRNA expression, down-modulating PDE4 activity, anti-inflammation and anti-mucus hypersecretion, and ciclamilast may have therapeutic potential for the treatment of asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.