Abstract
Energy balance and reproductive functions are closely linked in some species. The sex hormones (estrogens and androgens) are involved in the regulation of appetite, metabolism, body weight (BW), and body composition in mammals. Previously, we showed that the effects of testosterone on BW, appetite, and fat weight were markedly affected by alterations to the gonadal hormonal milieu. In this study, we examined whether testosterone administration changes food preferences and whether these effects of testosterone depend on gonadal status in female rats. We also evaluated the underlying mechanisms responsible for these effects, focusing on hypothalamic inflammation and endoplasmic reticulum (ER) stress. In gonadal-intact (sham) female rats, chronic testosterone administration promoted a preference for a high-fat diet (HFD) and increased BW gain, fat weight, and adipocyte size, whereas no such effects were observed in ovariectomized (OVX) rats. Testosterone administration increased hypothalamic interleukin-1 mRNA expression in the sham rats, but not the OVX rats. On the contrary, testosterone administration decreased the hypothalamic mRNA levels of ER stress-response genes in the OVX rats, but not the sham rats. These testosterone-induced alterations in OVX rats might represent a regulatory mechanism for preventing hypothalamic inflammation and the overconsumption of a HFD. In conclusion, testosterone’s effects on food preferences and the subsequent changes were affected by gonadal status. Testosterone-induced changes in hypothalamic inflammatory cytokine production and ER stress might be related to these findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.