Abstract

Chronic noise exposure has been associated with Alzheimer's disease (AD)-like pathological changes, such as tau hyperphosphorylation and β-amyloid peptide accumulation in the prefrontal cortex (PFC). Corticotropin-releasing factor (CRF) is the central driving force in the stress response and a regulator of tau phosphorylation via binding to CRF receptors (CRFR). Little is known about the CRF system in relation to noise-induced AD-like changes in the PFC. The aim of this study was to explore the effects of chronic noise exposure on the CRF system in the PFC of rats and its relationship to tau phosphorylation. Male Wistar rats were randomly divided into control and noise exposure groups. The CRF system was evaluated following chronic noise exposure (95dB sound pressure level white noise, 4h/day×30days). Chronic noise significantly accelerated the progressive overproduction of corticosterone and upregulated CRF and CRFR1 mRNA and protein, both of which persisted 7–14days after noise exposure. In contrast, CRFR2 was elevated 3–7days following the last stimulus. Double-labeling immunofluorescence co-localized p-tau with CRF in PFC neurons. The results suggest that chronic noise exposure elevates the expression of the CRF system, which may contribute to AD-like changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.