Abstract

After an acute (4 h) treatment with an irreversible cholinesterase inhibitor organophosphate, metrifonate (100 mg/kg i.p.), the activities of both acetyl- and butyrylcholinesterase were inhibited (66.0–70.7% of the control level) in the rat brain cortex and hippocampus. There were no significant changes in the acetyl- and butyrylcholinesterase activities in the olfactory bulb, or in the choline acetyltransferase activity in all three brain areas. After chronic (2 or 5 week) metrifonate treatment (100 mg/kg daily i.p.), the activities of both cholinesterases were substantially inhibited in the rat brain cortex and hippocampus (15.8–31.8% of the control levels), but there was no inhibition of the choline acetyltransferase activity. Moreover, chronic metrifonate treatment did not have any effect on the distribution of the acetylcholinesterase molecular forms. In vitro, metrifonate proved to be a more potent inhibitor of butyryl- than of acetylcholinesterase in both the cortex and the hippocampus. In the hippocampus, the butyrylcholinesterase activity was twice as sensitive to metrifonate inhibition as that in the cortex (IC 50 values 0.22 and 0.46 μM, respectively). The effects of chronic (5 week) metrifonate treatment on the blood–brain barrier of the adult rat were examined. The damage to the blood–brain barrier was judged by the extravasation of Evans’ blue dye in three brain regions: the cerebral cortex, the hippocampus, and the striatum. No extravasation of Evans’ blue dye was found in the brain by fluorometric quantitation. These data indicate that chronic metrifonate treatment may increase the extracellular acetylcholine level via cholinesterase inhibition, but it does not have any effects on the blood–brain barrier. Therefore, it appears reasonable to hypothesize that cholinesterase activities do not play a role in the blood–brain barrier permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call