Abstract

Heat stress has a negative impact on dairy cow productivity. In order to reveal the mechanisms of heat-stress response, the mRNA and miRNA expression profiles of five cows under chronic heat-stress and thermoneutral conditions were assayed in blood by high-throughput sequencing technology. A total of 540 mRNAs and 9 miRNAs were expressed differently under heat-stress and thermoneutral conditions. Functional analyses revealed that MAPK signaling pathway, cellular senescence, circadian entrainment, aldosterone synthesis and secretion, and pathways in cancer were enriched for differently expressed mRNAs; meanwhile cGMP-PKG signaling pathway, thermogenesis, and protein digestion and absorption were enriched for differently expressed miRNAs. In addition, GADD45G, TGFB2, and GNG11 may play roles in the heat stress, and bta-miR-423-5p might be one of the regulators of heat-stress response in cows as potential mediators of chronic heat-stress response. In conclusion, the present study described the mRNA and miRNA expression patterns in blood extracted from cows during the transition from heat-stress to thermoneutral conditions. The results provide new data that could help in identifying mechanisms that mediate cows' response to chronic heat stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call