Abstract

Following spinal cord injury, the expiratory muscles develop significant disuse atrophy characterized by reductions in their weight, fiber cross-sectional area, and force-generating capacity. We determined the extent to which these physiological alterations can be prevented with electrical stimulation. Because a critical function of the expiratory muscles is cough generation, an important goal was the maintenance of maximal force production. In a cat model of spinal cord injury, short periods of high-frequency lower thoracic electrical spinal cord stimulation (SCS) at the T(10) level (50 Hz, 15 min, twice/day, 5 days/wk) were initiated 2 wk following spinalization and continued for a 6-mo period. Airway pressure (P)-generating capacity was determined by SCS. Five acute, spinalized animals served as controls. Compared with controls, initial P fell from 43.9 +/- 1.0 to 41.8 +/- 0.7 cmH(2)O (not significant) in the chronic animals. There were small reductions in the weight of the external oblique, internal oblique, transverses abdominis, internal intercostal, and rectus abdominis muscles (not significant for each). There were no significant changes in the population of fast muscle fibers. Because prior studies (Kowalski KE, Romaniuk JR, DiMarco AF. J Appl Physiol 102: 1422-1428, 2007) have demonstrated significant atrophy following spinalization in this model, these results indicate that expiratory muscle atrophy can be prevented by the application of short periods of daily high-frequency stimulation. Because the frequency of stimulation is similar to the expected pattern of clinical use for cough generation, the daily application of electrical stimulation could potentially serve the dual purpose of maintenance of expiratory muscle function and airway clearance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.