Abstract
We investigated the extent to which activity induced by chronic electrical stimulation could restore the mass and contractile function of rabbit tibialis anterior (TA) muscles that had undergone atrophy as a result of prolonged denervation. Denervation was carried out by selectively interrupting the motor nerve branches to the ankle dorsiflexors in one hind limb. Stimulators were implanted, with electrodes on the superficial and deep surfaces of the denervated TA muscle. Ten weeks later, the mass and mid-belly cross-sectional area (CSA) of TA muscles subjected to denervation alone had fallen to approximately 40% of normal. At this stage, stimulators in the other rabbits were activated for 1 h/day to deliver 20-ms rectangular bipolar constant-current pulses of 4 mA amplitude at 20 Hz with a duty cycle of 1s ON/2s OFF, a total of 24,000 impulses/day. The animals were examined after a further 2, 6 or 10 weeks. Stimulation restored the wet weight of the denervated muscles to values not significantly different to those of normal, innervated controls. It increased CSA from 39% to 66% of normal, and there was a commensurate increase in maximum isometric tetanic force from 27% to 50% of normal. Light and electron microscopic examination revealed a marked improvement in the size, packing, and internal organization of the stimulated-denervated muscle fibres, suggestive of an ongoing process of restoration. Excitability, contractile speed, power, and fatigue resistance had not, however, been restored to normal levels after 10 weeks of stimulation. Similar results were found for muscles that had been denervated for 39 weeks and then stimulated for 12 weeks. The study demonstrates worthwhile benefits of long-term electrical stimulation in the treatment of established denervation atrophy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.