Abstract

Contamination of human habitats with complex mixtures of heavy metals and polycyclic aromatic hydrocarbons (PAHs) is an important environmental and industrial health problem. Hexavalent chromium (Cr(VI)) and benzo(a)pyrene (B[a] P) are typical of the two, respectively. In recent decades, a great deal of research has focused on their carcinogenicity and mechanisms of action. However, few studies have been conducted to evaluate their combined effects on humans and cells, which has important implications for overall understanding of their toxicity and interaction. In the current study, the combined toxic effects of B[a] P and Cr(VI) were studied in human bronchial epithelial cells (16 HBE). We measured the genotoxic activity and epigenetic changes of these two toxicants alone and in combination on these cells and analyzed the difference between their single and combined toxicity. The results showed that B[a]P caused DNA damage in 16HBE cells in a concentration-dependent manner, while the presence of Cr(VI) showed a sharp decrease in DNA damage, and it inhibited the expression of genes related to base excision repair induced by B[a]P. In addition, Cr(VI) also reduced B[a]P-triggered epigenetic changes in 16HBE cells. In conclusion, the combined effect of B[a]P and Cr(VI) on 16HBE cells was less toxic than single B[a]P exposure, indicating that the combined toxicity of the two toxicants is partially antagonistic. Further research is required to explore the mechanism of this antagonism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call