Abstract
The objective of this study is to evaluate the effects of chromic chloride (CrCl3) on chick embryo fibroblast (CEF) viability. The cells were incubated with CrCl3 (0.02, 0.1, 0.5, 2.5, 12.5, and 62.5μM), and the viability was determined using MTT assay, morphological detection and flow cytometry. The results show that lower concentrations of CrCl3 (0.02, 0.1, and 0.5μM) did not damage CEF viability. At 0.1μM, CrCl3 can increase CEF viability (P<0.05). However, at higher concentrations of CrCl3 (2.5, 12.5, and 62.5μM), the number of apoptotic and necrotic cells (P<0.01) and intracellular reactive oxygen species (P<0.01) increased. In addition, decreased mitochondrial membrane potential (P<0.01) and enhanced intracellular calcium levels (P<0.01) were observed after the exposure. Moreover, apoptotic morphological changes induced by these processes in CEF were confirmed using Hoechst 33258 staining. Cell death induced by higher concentrations of CrCl3 was caused by an apoptotic and a necrotic mechanism, whereas the main mechanism of oxidative stress and induced mitochondrial dysfunction was apoptotic death. The induced apoptotic death in CEF is concentration- and time-dependent.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.