Abstract

This study examines the effects of cholestyramine (2 g/day) on the plasma clearance and tissue uptake of human low density lipoprotein (LDL) in rabbits. 1,2-Cyclohexanedione modification of human LDL abolishes its recognition by high affinity cell membrane receptors in vitro and delays its plasma clearance in comparison to native LDL. Consequently, the difference between the fractional rates of catabolism of simultaneously injected native and cyclohexanedione-treated LDL is an index of in vivo receptor-mediated clearance of the lipoprotein. When human 125I-LDL and 131I-cyclohexanedione-treated LDL were injected into rabbits, 44% of the lipoprotein was cleared from the plasma by the receptor mechanism. Various tissues were removed from the animals at the end of the turnover study and their relative uptakes of 125I native and 131I-cyclohexanedione-treated LDL were measured. All exhibited receptor activity to some extent, incorporating more native than cyclohexanedione-modified LDL. The greatest receptor activity per g of tissue was found in lymph nodes, spleen, and liver and, in terms of whole organ uptake, the liver played a major role in LDL catabolism. Treatment of the rabbits with cholestyramine lowered the circulating LDL cholesterol level by promoting its clearance (120%, p < 0.001) via the receptor pathway. This was associated with a virtual doubling of receptor-mediated incorporation of the lipoprotein into the liver. These results suggest that the drain which cholestyramine induces in the hepatic cholesterol pool promotes LDL receptor activity in this organ and thereby lowers the level of circulating LDL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.