Abstract

Amyloid β (Aβ) peptides generated from the amyloid precursor protein (APP) play an important role in the degeneration of neurons and development of Alzheimer's disease (AD). Current evidence indicates that high levels of cholesterol-which increase the risk of developing AD-can influence Aβ production in neurons. However, it remains unclear how altered level/subcellular distribution of cholesterol in astrocytes can influence APP metabolism. In this study, we evaluated the effects of cholesterol transport inhibitor U18666A-a class II amphiphile that triggers redistribution of cholesterol within the endosomal-lysosomal (EL) system-on APP levels and metabolism in rat primary cultured astrocytes. Our results revealed that U18666A increased the levels of the APP holoprotein and its cleaved products (α-/β-/η-CTFs) in cultured astrocytes, without altering the total levels of cholesterol or cell viability. The cellular levels of Aβ1-40 were also found to be markedly increased, while secretory levels of Aβ1-40 were decreased in U18666A-treated astrocytes. We further report a corresponding increase in the activity of the enzymes regulating APP processing, such as α-secretase, β-secretase, and γ-secretase as a consequence of U18666A treatment. Additionally, APP-cleaved products are partly accumulated in the lysosomes following cholesterol sequestration within EL system possibly due to decreased clearance. Interestingly, serum delipidation attenuated enhanced levels of APP and its cleaved products following U18666A treatment. Collectively, these results suggest that cholesterol sequestration within the EL system in astrocytes can influence APP metabolism and the accumulation of APP-cleaved products including Aβ peptides, which can contribute to the development of AD pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call