Abstract
Studying the variables that affect the membrane fusion mechanism of enveloped viruses is important for developing new strategies to combat viral infections. We analysed the effects of lipid vesicle cholesterol content on membrane fusion that is facilitated by infectious salmon anaemia virus (ISAV) fusion peptides. Lipid mixing assays were performed to study membrane fusion in large unilamellar vesicles (LUV) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), dipalmitoylphosphatidylcholine (DPPC) and cholesterol. Lipid mixing (%) increased more over time when 0.2 µm LUV contained no cholesterol or when the LUV membranes contained 15 mol% cholesterol. The secondary structure of the ISAV fusion peptides consistently remained a β-sheet both in water and in the presence of vesicles. Additionally, the dissociation constant (Kd) between the peptides and the lipid vesicles was obtained with different cholesterol contents. In the tests performed with lipid vesicles (0.2 µm or 0.4 µm LUV), cholesterol was found to influence membrane fusion that was facilitated by ISAV fusion peptides; however, the peptides studied did not require cholesterol in their membranes to facilitate membrane fusion in the smallest lipid vesicles (0.2 µm LUV).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.