Abstract

The ability to choose between response alternatives based on their likely consequences depends on distributed neural circuits that involve rodent medial prefrontal cortex (mPFC). To understand the effects of choice on mPFC function, we compared the activity of mPFC neurons in rats performing two tasks: dynamic delayed nonmatching to position (dDNMTP), a task with a prefrontal-dependent conditional choice, and serial lever pressing (SLP), a task lacking a choice but trained in the same apparatus with sequences of actions and reinforcements matched to dDNMTP. More neurons exhibited event-related responses during dDNMTP than SLP. Average firing rate during recording sessions was higher during dDNMTP for neurons with event-related responses, but lower for neurons with activity unrelated to behavioural events. Thus, compared to SLP, dDNMTP appears to enhance the activity of neurons that represent behaviourally relevant information and to suppress the activity of neurons that do not. dDNMTP was associated with responses related to preparation and memory delay that were not observed during SLP as well as enhanced responses related to movement and reinforcement. These results provide evidence that choice in the dDNMTP task is associated with adaptive changes in background firing rates and coding properties of mPFC neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call