Abstract

Spectral hole burning has been employed for decades to study various amorphous solids and proteins. Triplet states and respective transient holes were incorporated into theoretical models and software simulating nonphotochemical spectral hole burning (NPHB) and including all relevant distributions, in particular the distribution of the angle between the electric field of light E and transient dipole moment of the chromophore μ. The presence of a chlorophyll a triplet state with a lifetime of several milliseconds explains the slowdown of NPHB (on the depth vs illumination dose scale) with the increase of the light intensity, as well as larger hole depths observed in weak probe beam experiments, compared to those deduced from the hole growth kinetics (HGK) measurements (signal collected at a fixed wavelength while a stronger burning beam is on) in cytochrome b6f and chemically modified LH2. We also considered the solvent deuteration effects on triplet lifetime and concluded that both triplet states and local heating likely play a role in slowing down the HGK with increasing burn intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call