Abstract
The effects of chloride, bromide and iodide additions on the internal stress developed in nickel films deposited during high speed electroplating from nickel sulfamate baths operated close to the nickel ion limiting current density were investigated. The variations in internal strain in the films were detected in situ using a resistance wire-type strain gauge placed on the reverse side of the copper substrate. The film resistance on the as-plated electrodes was measured using an electronic current interrupter technique. The effects of chloride, bromide, and iodide additions could be classified into two groups: (a) chloride and bromide ions, and (b) iodide ions. For chloride and bromide additions over the concentration range of 0.1 to 0.5 M, the nickel deposits exhibited a block- and pyramid-like texture with a (200) crystal orientation. The internal tensile stress developed in 20 μm thick nickel films deposited in the presence of these two halides was as low as 140–170 MPa. Conversely, for additions of iodide, at iodide concentrations greater than 0.1 M the deposited nickel exhibited a fine granular texture of disordered crystal orientation. The internal tensile stress developed in 20 μm thick nickel films deposited from these latter baths tended to rise with increasing iodide concentration to values considerably higher than those observed at similar concentrations of NiCl2 or NiBr2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.