Abstract

ABSTRACT Chloramine T, a sodium p-toluene sulfonchloramide, is known to possess a wide spectrum of biocidal activity and is employed as a disinfectant in fish farms to treat bacterial infections. Although Chloramine T may effectively combat pathogens, the sublethal and lethal effects and changes in acetylcholinesterase (AChE) activity remain poorly elucidated using Danio rerio (zebrafish) embryos. Zebrafish is considered a model organism for toxicant screening research and exhibits mammalian-like physiological responses when exposed to environmental pollutants. The aim of this study was to (1) determine LC50 of Chloramine T after 96 hr exposure, (2) verify disinfectant effects on developmental morphology, and (3) evaluate the disinfectant effects on AChE activity in zebrafish embryos. Chloramine T exposure was performed using 16, 32, 64, 128, or 256 mg/L concentrations. The mortality LC50 values were 143.05 ± 3.11 and 130.97 ± 7.4 mg/L at 24 and 96 hr, respectively. Data demonstrated delayed hatching, reduced heartbeats, cardiac edema, and equilibrium disruption of hatched larvae throughout embryonic development. In addition, Chloramine T inhibited AChE activity at 64 or 128 mg/L after 96 hr treatment, corroborating the sub-lethality results observed in zebrafish embryo development and demonstrating an equilibrium disruption in zebrafish larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call