Abstract

This experiment was conducted to evaluate the effects of dietary Chinese yam polysaccharides (CYP) on myogenic differentiation 1 (MYOD1), myogenin (MYOG), and myostatin (MSTN) mRNA expression of breast and thigh muscle tissues in broilers. A total of 360 (1-day-old, gender-balanced) crossbred broilers chicks with similar body weight (BW) were randomly distributed into four groups, with three replicates in each group and each replicate included 30 broilers. The feeding trial lasted for 48 days. Experimental broilers were fed 0.00 mg/kg basal diet (control group), 250 mg/kg, 500 mg/kg, and 1000 mg/kg CYP, respectively. The results showed that CYP250 and CYP500 groups had higher thigh muscle percentage (TMP) compared to the control group (p < 0.05). Meanwhile, the expression of MYOD1, MYOG mRNA in breast muscle tissues of CYP500 and CYP1000 groups was higher (p < 0.05), and the expression of MSTN mRNA in thigh muscle of CYP250, CYP500, and CYP1000 groups was lower than that of the control group (p < 0.05). In addition, there was no significant difference in the expression of MYOD1 mRNA in the thigh muscle tissue of each group (p > 0.05). Bivariate correlation analysis showed that the expression levels of MYOD1, MYOG, and MSTN mRNA in the thigh muscle tissue of broiler chickens in the CYP500 group were positively correlated with TMP. However, the expression of MYOG mRNA in thigh muscle tissue of the CYP1000 group was negatively correlated with TMP. In general, this study indicated that appropriate dietary CYP supplementation influenced the growth and development of thigh muscle tissue in broilers by altering TMP and muscle tissue development-related genes expression. Therefore, CYP could be used as a potential feed additive to promote the development of muscle tissues in broilers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.