Abstract

Lobar functional residual capacity-to-total lung capacity ratios (FRC/TLC) and strains in five supine anesthetized dogs were determined from volumes and side lengths of tetrahedra formed by multiple intraparenchymal markers whose positions were determined roentgenographically. Strain is related to fractional changes in length of elements in a Cartesian coordinate system and was used to describe parenchymal distortion. Volumes and strain patterns were compared in three states: intact dogs, after transection of forelimb structures to relieve traction on the chest wall, and in dogs' excised lungs. Removing traction (NT) decreased the plethysmographically determined FRC and the upper-to-lower lobe ratio (UL/LL) for FRC/TLC. The ratio in the NT state was more like the ratio in the excised lungs (UL/LL approximately equal to 1) than in the intact dog (UL/LL greater than 1). Strain patterns were similar between the intact and the NT states, indicating no lobar shape change at FRC between these two states. Strain in the excised lungs differed greatly from strains in the intact and NT states. We conclude that forelimb traction alters volume distribution between lobes and that lung-chest wall interactions are important in determining volume and strain patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call