Abstract

We investigated the mineralogy of basalt weathering rinds and fresh basaltic rocks using visible/near-infrared (VNIR) ( λ = 0.4–2.5 μm) and thermal emission ( λ = 6–30 μm) spectroscopy to 1) constrain the effects of chemical weathering on rock spectra, and 2) further understand the context of infrared spectra of Mars, which may contain evidence for weathered rocks and particulates derived from them. VNIR spectra of weathered rock surfaces are generally redder and brighter than fresh surfaces. Thermal infrared spectra of weathered basalts show evidence for aluminous opal and clay minerals (or clay precursor mineraloids) in natural surfaces. Supporting VNIR observations generally do not show the same evidence for neoformed clays or silica because of their textural occurrence as thin coatings and microfracture-fill, and possibly due to poor crystallinity of the aluminosilicate weathering products in this context. Spectral trends observed at Mars, such as the detection of low to moderate (10–25%) abundances of silica and clay that are observed in the thermal infrared but not in the VNIR, are therefore consistent with trends observed for natural rock surfaces in the laboratory. The combined use of thermal infrared and VNIR suggest that vast areas of martian dark regions contain sandy–rocky basaltic materials with weathering rinds and thin coatings that could have formed in conditions of relatively low water/rock ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.