Abstract

Polymer-dispersed liquid crystal (PDLC) systems on the basis of nematic liquid crystal E7 and amphiphilic binary copolymers of acrylic acid (AA) with such acrylates as 2-ethylhexyl acrylate (EHA), n-butyl acrylate (BA), and methyl acrylate (MA) are investigated. It is shown that the liquid crystal (LC) drops in the copolymer EHA–AA have submicrometre sizes, and their dependence on the composition of the photo-curable monomer mixture is described by a parabolic curve. The highly oriented domain structure in the same system is first revealed when electric field is applied. The threshold voltage for all systems begins to increase with some critical composition of a monomer mixture in which the longer the hydrocarbonic radical in an acrylate molecule, the higher the content of AA. The PDLC system based on the BA–AA copolymer with 30 wt% LC exhibits the least value of the driving voltage, 1 V μm–1, and the lowest memory effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call