Abstract

Based on a three-year field experiment, the effects of reduced chemical fertilizer combined with straw application on paddy yield, soil fertility properties, and community structure of diazotrophs in a double-rice cropping field three years after straw application were examined. Three treatments were applied:conventional fertilizer application (CF), chemical fertilizer reduction combined with a low straw application rate (CFLS, 3 t·hm-2), and a high straw application rate (CFHS, 6 t·hm-2). The results showed that CFLS and CFHS did not significantly reduce rice grain yield (P>0.05); significantly neutralized soil acidification; increased soil microbial biomass carbon and nitrogen, dissolved organic carbon, and organic carbon content (P<0.05); and significantly reduced soil redox potential, ammonium nitrogen, and nitrate nitrogen contents (P<0.05). This was more conducive to improve soil nitrogen use efficiency. Compared with those under the CF treatment, the natural nitrogen fixation functional communities of CFLS and CFHS increased the Shannon, PD, and Evenness indexes (P<0.05) due to the improvement of conditions such as the increase in soil carbon storage and the decrease in acidification degree. The relative abundance of microbial communities with nitrogen fixation, carbon fixation, and plant growth promotion functions such as Ferrigenium, Sulfurivermis, Methylomonas, Methylovulum, Ectothiorhodospira, and Nostoc increased significantly (P<0.05). In conclusion, the reduction in chemical fertilizer combined with 3 t·hm-2 and 6 t·hm-2 straw application was an effective measure to improve the community structure of soil diazotrophs and the potential of soil nitrogen fixation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call