Abstract

This paper presents a review of our current understanding of environmentally induced slow crack growth in glasses, single crystals, and polycrystalline ceramics. It is shown that the rate of crack growth is controlled by the chemical activity of the active species in the environment as well as by the stress intensity at the crack tip. A recently developed molecular model of stress‐induced chemical reaction between vitreous silica and water is described. The implications of this model for the effects of other chemical species on crack growth are discussed. Finally, the complications introduced by the presence of grain boundaries in polycrystalline ceramics are pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.