Abstract

The objective of this investigation was to correlate the chemical composition of welding rods for gas tungsten arc welding with the fracture resistance and tensile properties of type 347 welds through the systematic tests and microstructural analyses. Five weld metals which differed in contents of carbon, nitrogen and niobium each other and a high δ-ferrite containing weld metal were deposited by the six different welding rods. J-R fracture resistance and tensile properties were evaluated for the type 347 welds. The microstructural examinations were performed to relate key microstructural features to mechanical properties. It was found that the contents of Nb(C,N) precipitates in type 347 welds were determined by the mixed function of carbon and nitrogen and niobium contents in welding rods. The strengths of type 347 welds were in direct proportion to the contents of Nb(C,N) and J-R fracture resistances were inversely proportional to the contents of Nb(C,N). It was concluded that the type 347 weld with high fracture resistance and adequate strength was obtainable by controlling the sum of carbon and nitrogen contents near 0.1wt% and a limitation of the carbon content below 0.04 wt% in welding rod.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call