Abstract

We developed value-added, high-strength lignocellulosic biopolymers by exploiting high-lignin biomass waste of palms. Lignocellulosic biopolymers were prepared by hot-pressing microfibrillated raw and alkaline pre-treated date and coconut fibers and leaves powders consisting of (≤53–≤106 μm) particles in the range 140–180 °C. The obtained biopolymers were subjected to three-point bending strength, water resistance, structural morphology (SEM), thermal stability (TGA/DTG), spectroscopy (FTIR), and crystallinity (XRD) analyses. Findings showed that raw fiber-based and alkaline-pretreated biopolymers exhibited bending strength, water resistance, and thermal stability (~200 °C) superior to those of leaf-based biopolymers. Furthermore, lignocellulosic biopolymers prepared from smaller particles showed enhanced bending and thermal properties, compared to those prepared from large particles. By mechanical and thermal properties, the optimum results were observed for biopolymers pre-treated with 1 wt% NaOH, except for coconut leaf-based biopolymers. Results were correlated to chemical composition and particle size of milled lignocellulosic biomass, allowing for efficient lignin condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.