Abstract

The present study is a systematic investigation of the effects of microstructural changes, which have originated from the variations of filler metals and welding processes, on the J-R properties of simulated welds. Two AISI Type 347 weld metals, with different carbon contents, deposited by a GTAW process and two AISI Type 347 weld metals, with different carbon contents, deposited by a SMAW process were used in this study. The J-R tests were conducted at 316oC (600oF). The welds deposited by the GTAW process showed higher fracture resistances when compared to the welds deposited by the SMAW process. The J-R fracture resistance of the Type 347-GTAW processed weld with high carbon content was remarkably low when compared to the weld with low carbon. The J-R fracture resistances were decreased by coarse Nb(C, N) precipitates in the Type 347 weld deposited by the GTAW process. In the case of the SMAW welds, mainly coarse Ti-rich particles which had originated from the shielding of the welding rods deteriorated the fracture resistances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call