Abstract

Chemical boundary conditions (BCs) are important inputs for regional chemical transport models. In this study, we use the brute-force method (BFM), process analysis (PA) and response surface model (RSM) to quantify the effects of BCs on simulated O3 concentrations in different regions of China by the weather research and forecasting with chemistry (WRF–Chem) model. We combine the model with an integrated gas-phase reaction rate (IRR) tool to further analyze the changes in the O3 chemical mechanisms. Our results show that the simulated O3 concentrations in western cities are significantly affected by the O3 in the BCs (BC-O3), which can increase the maximum simulated O3 concentration, such as in Lanzhou (36.6 μg/m3, 26.3 %), Wuhai (30.1 μg/m3, 25.5 %) and Urumqi (50.7 μg/m3, 41.2 %). In contrast, O3 generation in the eastern region is dominated by emissions. Subsequently, we compare the reaction rate changes in O3 generation and consumption under the effects of BC-O3 in the western city of Urumqi and the eastern city of Beijing. The results show that in Beijing, the O3 concentration and the related chemical reaction rates undergo little change, while in Urumqi, the concentration and reaction rates have significant differences. The BC-O3 significantly accelerates the O3 photochemical reaction process in Urumqi, resulting in increased O3 generation and consumption reaction rates; additionally, there may be a chemical reaction pathway for the formation of O3: BC-O3 + NO → NO2 + hv → O + O2 → O3. BC-O3 transmission is the main pathway of changes in the simulated O3 concentration in the study area, and the chemical reactions between BC-O3 and local pollutants are primarily characterized by O3 consumption. In conclusion, the study shows the importance of BCs for regional model simulation while providing supporting information for O3 formation in model studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call