Abstract

One of the most important issues in ecotoxicology is better understanding the effects of interactions between chemical pollutants and physical environmental factors on animals. To fill this knowledge gap, changes in the activity of acetylcholinesterase (AChE) in the brain samples of bank voles Myodes (Clethrionomys) glareolus due to temperature effects, and two chemical stressors were studied in a full factorial laboratory experiment (27 treatments). The experiment was divided into three phases: acclimatisation (3 days), intoxication (42 days) and elimination (21 days). During the intoxication phase, animals were orally exposed to different concentrations of either nickel (0, 300 or 800mg Ni/kg food), chlorpyrifos (CPF) (0, 50 or 350mg CPF/kg food) or a mixture of both chemicals. During the acclimatisation and elimination phases, the bank voles were given uncontaminated food. The experiment was conducted at three different temperatures (10, 20 or 30°C), and a 12h:12h light:dark regime. The animals were sacrificed at 0, 5, 10, 20, 42, 49 and 63 days after the beginning of the intoxication, and brain samples were obtained for chemical analysis. The nickel accumulation in the brain depended on the level of nickel exposure and on interactions between the temperature and other factors. Nickel exhibited no effect on AChE activity. In contrast, AChE was drastically inhibited by chlorpyrifos and low temperature, but interactions between all factors significantly influenced the enzyme activity during the elimination phase of the experiment. High mortality was observed in the groups exposed to high concentrations of nickel and chlorpyrifos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call