Abstract

This paper summarises a study of the application of the synthetic chelate ethylenediaminetetraacetic acid (EDTA), and the natural chelates ethylenediamine-N,N'-disuccinic acid (EDDS) and nitrilotriacetate (NTA) to enhance ryegrass (Lolium multiflorum Lam.) uptake of the heavy metal(oid)s (HMs) (As, Cd, Cu, Pb and Zn) from contaminated soils in mining sites. The study compares the effects of these chelates (EDTA, EDDS and NTA) on the phytoavailability of HMs (As, Cd, Cu, Pb, Zn) using ryegrass (Lolium multiflorum Lam.) through the single addition and sequential addition methods. The results show that application of EDTA, EDDS and NTA significantly increases ryegrass (Lolium multiflorum Lam.)'s shoot uptake of some HMs when compared with no EDTA, EDDS or NTA application, particularly through sequential chelate treatment (EDTA 0.5:1+0.5:1; NTA 0.5:1+0.5:1; EDDS 0.5:1+0.5:1). EDTA 0.5:1+0.5:1 was more effective at increasing the concentration of Pb in shoots than were the other chelates (EDDS and NTA) and controls. Moreover, the concentrations of Zn in the shoots of ryegrass (Lolium multiflorum Lam.) in Hich Village significantly increased with the application of split dose (0.5:1+0.5:1). The plants displayed symptoms of toxicity including yellow and necrotic leaves at the end of the experiment. The selected chelates (EDTA, EDDS and NTA) led to a significant decrease in plant biomass (yield) 28 days after transfer with a maximum decrease in EDTA treatment (0.5:1+0.5:1) soils. This decrease was 3.43-fold in Ha Thuong, 3-fold in Hich Village and 1.59-fold in Trai Cau, respectively, relative to the control. HM concentration and dissolved organic carbon (DOC) in pore water provided an explanation for why fresh weight was significantly reduced with application of chelates in sequential dose (EDTA 0.5:1+0.5:1 and NTA 0.5:1+0.5:1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.